Logging Agents vs. Logging Libraries: Which Should You Use?

4 MIN READ
MIN READ

When logging applications to a centralized location like Mezmo, developers have two options: using a logging agent or using a logging library. Both approaches will get your logs to their destination, but choosing one over the other can have a significant impact on the design of your applications and infrastructure.In this article, we'll explain the difference between logging via agents and logging via libraries, and which approach works best in modern architectures.

What is a Logging Agent?

A logging agent (also called a log shipper) is a program that reads logs from one location and sends them to another location. They're commonly used to read log files stored on a computer and upload individual events to a server for centralization. They essentially act as log funnels for software running on the host, including applications, services, and operating system components. Agents are often deployed as part of a larger telemetry pipeline that captures and routes logs, metrics, and traces through your observability stack.

The Benefits of Logging Agents

The main benefit of agents is scalability. Since agents operate independently of the applications being logged, you can log almost any application and any number of applications using a single agent. This also lets you modify, update, or replace agents without having to take down your application or hosts. Agents use minimal resources, have few moving parts, and are easy to deploy using configuration management tools.

Agents are optimized for high throughput and high reliability. They can use techniques such as data compression, persistent connections to remote servers, and multithreading to quickly ship logs to remote services. For example, the Mezmo agent uses HTTPS to connect to Mezmo's ingestion servers, and gzip to compress logs and reduce the total bandwidth used.

In use cases where quick deployment is crucial—like containerized environments—many teams choose lightweight log routers such as Logspout to simplify the process.

Agents are also capable of detecting transmission errors and resending failed messages without blocking new logs from being sent. Lastly, agents are format-agnostic. Regardless of how or where your applications store their logs, an agent with permission to read the log file can extract events from it. This saves developers from having to build applications with specific logging requirements.

Agents can also enrich telemetry with metadata like environment tags or host identifiers, helping your SIEM vs SOC strategy by enhancing both security context and operational insight.

The Drawbacks of Logging Agents

The main challenge with logging agents is that there still needs to be a way for applications to get their logs to the agent. The most common method is log files, but this requires some operational overhead for the agent to constantly access, scan, and track new log files and log lines. Not only does it requires some CPU compute usage, there's a race condition between the time the log is generated and the time the agent reads it that results in latency. One alternative is to use a syslog service, but this adds new problems.The increasing use of serverless and FaaS platforms pose another challenge for agents. Agents often require some amount of interaction with the host. This creates problems with platforms where the host is abstracted away, such as AWS Lambda or Heroku. In these situations, the platform usually offers its own built-in logging service or API. For AWS Cloudwatch, you can use a Lambda function with LogDNA or in Heroku, it streams logs written to standard output to a service called Logplex. You then need to use an add-on to forward those logs.

What is a Logging Library?

A logging library (or logging framework) is code that you embed into your application to create and manage log events. Logging libraries provide APIs for creating, structuring, formatting, and transmitting log events in a consistent way. Like agents, they're used to send events from your application to a destination. The difference is that unlike agents, libraries run with your application and not separately from it.

The Benefits of Logging Libraries

Logging libraries are popular because of their portability, ubiquity, and ease of use. Libraries exist for all major programming languages and application frameworks, and most of these support most common log formats and transports. Installing a library is relatively quick, makes no permanent changes to your infrastructure, and prevents you from having to manage another service.

Logging libraries are seeing a surge with the growing popularity of serverless applications. Developers use libraries to ensure their application logs to the same destination no matter where or when their application runs.

For teams adopting APM logging as part of their DevSecOps workflow, libraries provide precise control over instrumentation and allow application-level events to be tightly coupled with performance data.

The Drawbacks of Logging Libraries

Adding a logging library to your application requires you to change your source code. You will need to add dependencies, logging statements, and configuration files to your application, increasing its size and complexity. This close integration makes it difficult to remove, swap out, or in some cases, update the library between major versions. Abstraction layers such as SLF4J try to mitigate this, but end up adding yet another API layer on top of the library's API for the slight benefit of adding flexibility.In addition, logging libraries often underperform compared to agents. Libraries are commonly single-threaded and synchronous by default, meaning your application must wait for the library to finish writing a log event before continuing. This can lead to noticeable delays, especially when logging over a network connection. Some libraries offer multi-threading and asynchronous logging, but this isn't guaranteed for all programming languages or transport methods.Lastly, libraries only run as long as your application is running. If your application shuts down or crashes, your logging solution goes with it. This makes it extremely difficult to log fatal errors or stack traces unless specifically supported by the library, and even then it's not guaranteed.

Which Method Should I Choose?

We recommend an agent-based approach for several reasons:SimplicityDeploying an agent is much easier than deploying a library for each application. A single agent can route logs for an entire host with minimal setup and configuration. Agents also provide advanced features that libraries might not offer such as multi-threading and failure safety. Developers don't need to add code or evaluate different solutions: they simply write their logs to a destination that the agent can read, and run the application.ScalabilityAgents will almost always outperform libraries, especially as the number of applications increases. With libraries, each application runs its own instance of the library, resulting in duplicated effort. Meanwhile, a single agent instance can log for almost any number of applications while offering better performance and better log management.

Mezmo Supports Your Choice and Use Cases

Mezmo open sources our agent so you can see firsthand how our agent sends logs from your servers to Mezmo using encrypted persistent connections, data compression using gzip, automatic reconnections with no data loss, and transparent support for rotating log files. Our agent is self-updating, supports all major operating systems, and can even be deployed over an entire Kubernetes cluster with just two commands.

We also support many code libraries and you can take advantage of our REST API to integrate that with your environment. Chat with us or contact us and we can support you as you decide how you’d like to send your logs.

Whether you're building a telemetry pipeline, comparing SIEM vs SOC tooling, or instrumenting with APM logging, Mezmo gives you the flexibility to choose the logging method that best fits your architecture.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines
    6 Steps to Implementing a Telemetry Pipeline